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On the Theory and Error Estimation of the

Reduced Basis Method for Multi-Parameter Problems'

BY

WERNER C. RHEINBOLDT 2

ABSTRACT. In an earlier paper (ZAMM 63, 1983, 21), J.P.Fink and W.C.Rheinboldt devel-

oped a priori local error estimates for the scalar-parameter case of the reduced basis method

by considering the method in a differential-geometric setting. Here it is shown that an anal-
ogous setting can be used for the analysis of the method applied to problems with a multi-

dimensional parameter vector and that this leads to a corresponding local error theory also

in this general case.

1. Introduction.

The computational analysis of many problems in science and engineering involves the

solution of very large systems of nonlinear equations. Thus, not surprisingly, there is con-

siderable interest in reducing the size of these problems. One of these reduction techniques

has become generally known as the reduced basis method. Some early work on this method

includes [N77], [ASB78], but, beginning with [NP80], [N81], [N82], [NP83a], much of the

detailed development for a range of problems in nonlinear structural mechanics is due to

A. Noor and his co-workers. Since then the literature on the method has grown rapidly

and also the number of application-areas has grown and includes now, for instance, initial

value problems for ordinary differential equations ([PL87]), differential-algebraic equations

(L91]), certain classes of parabolic differential equations ([J90]), as well as climate prob-

lems ([JM871, [M88]).

The method applies to systems of parametrized, nonlinear equations and was originally

developed in the setting of a standard continuation procedure for nonlinear problems with

'This work was supported in part by ONR-grant N-00014-90-J-1025, and NSF-grant CCR-8907654
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one scalar parameter. But, in [NP83b], [NBS84], [NPA84], [NAT87], A. Noor et al showed

that it can also be extended to problems involving several parameters. A first, general

analysis of the a priori error behavior of the method in the one-parameter case was given

in [FR831. Some further aspects of these results were discussed in [P85], and then in [FR85]

a general local error estimation theory was developed which contains the earlier estimates

as special cases. The approach in [FR831 was to place the method in a general differential

geometric setting where it can be formulated as a projection onto a subspace spanned by

the first several vectors of the moving frame of the solution path.

In this paper we show that this geometric approach can be extended to the multi-

parameter case. For this we summarize in section 2 the indicated differential geometric

setting and then show in section 3 that the general local error theory of [FR85] can be

applied to the multi-parameter case of the reduced basis method. This is followed in section

4 with a discussion of the basic approach to the computation of the reduced basis vectors

which turns out to correspond to that developed by A. Noor (loc.cit.) by different means.

At the same time, the theory suggests some new computational approaches for low-orier

approximations.

2. The Basic Setting.

As noted above, many stationary problems in technical applications are modelled by a

nonlinear equation

(2.1) F(z,A) = 0

3involving a state variable z; a d-dimensional parameter vector A; and a differential oper-

ator F with associated boundary conditions. Standard discretizations - for instance, by

finite elements or finite differences - typically produce very large finite-dimensional non- 1
linear systems of equations. The aim of the reduced basis method is to construct special

3 approximations that reduce the number of degrees of freedom without compromising the

errors.--, evr ilidbillty Codoe-
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The equation (2.1) involves a mapping F : Z x A -- Y from the product Z x A of the

state space Z and parameter space A into another space Y. Typically, the solution set

(2.2) M- { (z,) E Z x A; F(z,A) = 0}

is a differentiable submanifold of Z x A. All standard discretizations leave the parameters

unchanged and hence produce approximate equations of the form

(2.3) Fh(zh, A) =0

involving a mapping Fh : Zh x A -+ Yh where Zh C Z and Y, C Y are suitably chosen

finite dimensional subspaces. The construction of Zh, Yh, and Fh usually takes little

or no account of the properties of the solution manifold M. Hence, in our differential-

geometric terminology, the idea of the reduced basis method may be viewed as the design

of approximations that do take account of information about the manifold M and its local

coordinate systems.

For a classical illustration of this idea, suppose that M C R 3 constitutes a smooth curve

x x:JCR'-*R3, X=X(s) ER 3, sEJ.

It is no restriction to assume that s denotes here the arclength. Then the local moving

frame at x = x(s) consists of the tangent vector ul(s) = x'(s), the principal normal

u2 (s) = z"(s)/1x"(s)112 , and the bi-normal vector u 3 (s) = u 1 (s) x u2 (s). If we express x

locally near x(so) in terms of this moving frame,

1 3
X(s) = a0 +Zr(s, so)uk(so),

k= 1

then the coefficients satisfy the well known approximation properties

ak(s, s0) = (W(s) - X(So))Tuk(So) = O((s - S0 )k), k = 1,2,3, as s --. so.
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Analogously, a sufficiently smooth curve in R' can be approximated locally to order k + 1

by using as coordinate system the first k moving frame vectors, 1 _< k < n. In other words,

independent of the dimension n of the ambient space, already a few basis vectors may

suffice to represent the curve locally to a relatively high accuracy. This is the fundamental

idea behind the reduced basis approximations.

As noted above, the given equation (2.1) generally models a problem in an infinite

dimensional state space Z. Then, in essence, we have the following two possible choices

for introducing the desired approximation:

(a) Use a 'reduced-basis' approximation of the solution manifold (2.2) of the original,

infinite-dimensional equation (2.1).

(b) Construct first a standard discretized equation (2.3) of the original problem and

then choose a 'reduced-basis' approximation of the solution manifold of this dis-

cretized equation.

Evidently, (a) has the advantage of only one small discrete problem and hence only

one discretization error. But, in general, this approximation is difficult to obtain since it

requires working directly with the original infinite dimensional equation. In contrast, (b)

has the advantage that the 'reduced-basis' approximation is much easier to compute since

it involves only finite dimensional equations. But there is now the disadvantage that the

first discrete system (2.3) is large and that the resulting two discretization errors are hard

to control together. Despite of this, (b) has become the generally accepted approach.

3. The Local Error Estimation. In line with the approach (b) we assume from now

5 on that

X, Y real, linear spaces with dim X = n, dim Y = m, n = m + d, d > 1;

F: S -+ Y, CP-mapping on the open set S C X, p > 2.

In other words, F represents the first discretization of the original operator. Generally, for

any linear space E we denote an open or closed neighborhood of a point e E E by U(e, E)

or U(e, E), respectively. On all linear subspaces of E the relative topology is used.

1 4



As usual, a point x° is a regular point of the mapping F if rank DF(z0 ) = m. Suppose

that as the result of some computations we have accepted a regular point x° E S and

I that F(x° ) = yo. Then the submersion theorem ensures that for a sufficiently small

I neighborhood 1(x°, X) C S the local solution set

i (3.2) M ={z EU(x,X); F(x) yo}

I is a C,-submanifold of X of dimension d.

In order to introduce a local parametrization of this manifold at x0 we choose a splittingI
(3.3) X=TEV, dimT=d, dim V=m, Vfl kerDF(x° ) - {0}.I
and consider the equation F(x ° +t +v) = yO with t E T and v E V. Evidently, (3.3) implies

that DF(x°)lv E Isom (V Y). Hence the implicit function theorem ensures the existence

of neighborhoods 1(0, V) and U, =-/(0, T) with U(xO, X) = x ° + U, + 1(0, V) C S and

of a CP-map v : U, - V with v(0) = 0 such that the local coordinate map

(3.4) D : U -+ X, $(s) = X0 + t + v(t), t E U,,

is a CP-diffeomorphism from U, onto the (relatively) open neighborhood U(x ° , X) n M of

X0 in M (see also [R861).

A projection method will be used to construct the desired approximation of the manifold

M. For this let

(3.5a) Pp E L(V), P2 = p, rge Pp, = V,, dim Vp = p < m,

be a given projection and note that, because of dim V = dim Y = m we can choose a

linear mapping

(3.5b) J E L(X,Y), ker J = T, rge J = Y, J1v E Isom(V,Y).

1 5



Then the subspace Xp, = T E Vp C X has dimension d + p, and ip = JlvPpJl,1 E L(Y)

is a projection of Y onto the subspace Y = rge Hp = JvV of dimension p. Thus the

approximate problem

(3.6a) Fp: Sp= Sn (:° + Xp) -Yp, Fp(:) = flpF(x), x E Sp,
0

(3.6b) Fp(x) = yo, x E Sp, yo = Ipy ° .

is well defined.

Obviously, x° E Sp not only satisfies the original equation F(x) = y0 but also the

approximate equation (3.6b). We are interested in the solutions of (3.6b) locally near x0

and in an estimate of the approximation error. For this we extend the mapping (3.6a) to

all of S in line with the following result:

Lemma 1. Consider the extended mapping

(3.7) Fp: s -Y, Fp(:) = (y - n,)J vr(x - :o) + np(F() -yo),

where r E L(X) denotes the natural projection of X = T E V onto the second factor.

Then ,(:) = 0 for some x E S if and only if x E Sp and Fp(x) yo.

The proof is straightforward. In fact, if FP(:) = 0 for x = 0 + t + v E S then

JIVV = rIp(Jlvv - F(x) + y0 ) E Y whence v E Vp and therefore x E Sp as well as

(IY - lip)Jlvv = 0 andF()=y Conversely, if Fp(x) = yo x =x + t + v E Sp then

v E V and thus FP(X)= 0.

Evidently, we have Fp( ° ) = 0 and it turns out that x0 is a regular point of Fp if the

condition

(3.8) V1 n ker lIpDF(x° ) = {0},

holds. In fact, by (3.7) we have

DFp( O) = (Iy - l1p)Jr1v + lIDF(:° )

6
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I and (3.8) shows that DFp(x°)v, E Isom (Vp, Yp) whence lIpDF(x° ) maps V onto Y while

(Iy - lip)jlvr maps V onto the complement rge (I. - 1Up). Therefore, all points x in some

sufficiently small neighborhood U(x ° , X) C S of ?° are regular and the local solution set

(3.9) Mp x E U(x,X); FP(X) = 0 },I
is again a d-dimensional submanifold of X of class C P.

I It turns out that, because of (3.8), we can define the approximation error by comparing

points on M and Mp near ?° that have the same coordinate t. This leads to the following

theorem proved in [FR85] (see also [R86]):

ITheorem 1. Under the assumptions (3.1) let z° E S, with F(z) = y', be a regular point

where on the local manifold M of (3.2) the splitting (3.3) defines the local coordinate map

I (3.4). With the projection (3.5a) and the linear map (3.5b) introduce the approximate

problem (3. 7a/b) and suppose that (3.8) holds. Then there exists a ball Bo C U, centered

at the origin of T and a neighborhood U(O, V) such that xA +Bo +U(O, V) c S and that for

any t E Bo the equation F(z + t + w) = 0 has a unique solution w = vp(t) in U(0, V). The

I mapping vp : Bo -+ U(0, V) is of class CP and satisfies vp(Bo) E Vp nl U(O, V). Moreover,

the error estimate

(3.11) 1iv(t) - vp(t)lI _ CIt(Iv - Pp)v(t)ll, Vt E Bo,

holds with a constant C independent of t.

We sketch briefly the proof and refer for further details to [FR851 or [R86]. It is based

on the following implicit function theorem used, in a more general form, in [BRR81a,b,c]:

Theorem 2. Let V, T, Y be finite dimensional, real, linear spaces and G : S -* Y a C"-

map, p > 2, on an open set S of X = T x V with (0, 0) E S and G(0, 0) = 0. Suppose that

on a compact neighborhood Uc = U(0, T) there exists a Lipschitz - continuous function

v : U, --, V such that v(O) 0, t + v(t) E S for t E Uc, and
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(i) DvG(t,v(t)) E Isor (VY), Vt E U,

(ii) IID,G(t, v(t))-'ll < -ti, IIDAG(t, v(t))Il _< -f2, Vt E Uc,

(iii) limto IIG(t, v(t))ll = 0,

where -yl, 72 are positive constants independent of t. Then there exists a bal B0 C Uc

centered at the origin of T and a neighborhood U(0, V) such that Bo 0 1(0, V) C S and

that for any t E Bo the equation G(t, w) = 0 has a unique solution w = w(t) E U(0, V).

Aloreover. the mapping iv : Bo - V is of class C, and

(3.12) jjw(t) - v(0)1 < ClItlil, Vt E Bo

with a constant C independent of t.

The main part of the proof of Theorem 1 consists in applying Theorem 2 to the mapping

G:SG={(t,v); t ET V,: 0 +t+vES}- Y, G(t,v)=Pp(x+t+v).

By Lemma 1 we have G(t,v) = 0 for (t, v) E SG exactly if: = ?° + t + v E Sp and

Fp() =- V0. Moreover, (3.8) implies that D G(0,0) E Isom (V, Y). Hence

IG(tv) E Isom (V,Y), JIDG(t,v)-1 < :a, Il~tG(tV)11 < a2,

for all (t, v) in some compact neighborhood U((0, 0), T x V) C SG. We restrict this

neighborhood such that for all (t, vI), (t, v 2 ) E U((0, 0), T x V)

IIG(t, v2 ) - G(t,v,) - D,,G(t, vl)(v2 - V 1) 11 .IV2 -V111,IlI
whence it follows readily that

(3.13) IIV2- VI1 <- c IG(t, V2)- G(t, vI)jI, V(t, v1), (t, V2) E 0((0, 0), T x V),
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1 Since the mapping v : U, --+ V in (3.4) is of class 0' and v(O) = 0 there exists a

co-npact neighborhood U, = ."(0, T) C U, such that (t, v(t)) E UC((O, 0), T x V) for t E U,.

This implies that the conditions (i) and (ii) of Theorem 2 hold on U,. Moreover, (iii) is a

direct consequence of

IIF,((t))II = II(y - nH)Jjvr(i(t) - xo)Il _ const I($(t) - x0)ll .

Thus Theorem 2 applies and there exists a ball B0 C U, centered at the origin of T and a

neighborhood U(0, V) such that x° +B 0 +U(O, V) C S and that for any t E B0 the equation

IPF(x° + t + w) = 0 has a unique solution w = vp(t) in U(O, V). Moreover, the mapping

VP : Bo - U(0, V) is of class C p and it follows from Lemma I that vp(Bo) E Vp nlU(0, V).

Finally, (3.12) ensures that Ilvp(t)II < ClItfl for t E B0 . Hence, by restricting, if needed, the

ball B0 we have (t, v(t)), (t, v 2 ) E 0((0, 0), T x V) and the estimate (3.11) follows directly

from (3.13).

I4. The Choice of the Reduced Basis Vectors.

I The local error estimate (3.11) suggests that we should construct the approximating

space VP such that the quantityI
(4.1) II(Iv - fp)v(t)II

is as small as possible. For this we consider at the given regular point x° E S the 'tangential'

splitting

I (4.2) X=TEV, T=kerDF(x°), V=rgeDF(x )T .I
for which (3.2) certainly holds. Here we may useI
(4.3) J DF(x° ) E L(X,Y).

9
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I as the mapping (3.5b). The term 'tangential' splitting derives from the fact that the

tangent space of the local solution manifold (3.2) of F at xO may be identified with

ker DF(xO).

I For the computation we need basis mapping s

(4.4) K E L(Rd,X), rge K =T,

I and

i (4.5) AEL(RP,X), rankA=p, rgeA=VcV.

of the local parameter space T and the approximating space V9, respectively. By the choice

(4.3) of J we have JA E L(RP, Y) and rank JA = p whence there exists a bi-orthogonal

I mappping

(4.6) B E L(R P, Y), BTJA = Ip,

and. the corresponding projections Pp and li can be written as

(4.7) Pp = ABTJ, lp = JABT.

Therefore the resulting approximate equation is equivalent with the reduced problem

(4.8) G(s, w) M BTF(xo + Ks + Aw) = b° - BTy O, G: Rd x R P -* RP.

The condition (3.8) is here automatically satisfied. In fact, if fipDF(x0 )u = 0 for some

u E V then, since JAw = 0 only if w = 0, we have BTDF(xO)u = 0 and therefore

u E ker DF(xO) n Vp, C ker DF(x ) n V- {0}.

For the representation of the local coordinate map (3.4) it is useful to introduce the

mapping

(4.9) i U(0, R d ) -.. y, 77(s) = DF(x°)+ v(Ks), s EU(o, Rd),

10



I

I where as usual DF(x°)+ = (DF(x°)DF(x°)T )-IDF(z° ) and hence DF(x°)DF(x°)+ is

the orthogonal projection onto V. Then we have v(Ks) = DF(xO)Tri(S) for s E U(O, Rd).

The tangency property of the splitting obviously implies that Dr/(0) = 0. Thus for any k

I less than the differentiablity class p of F we obtain

(4.10) v(Ks) = E ,DF(x°)TDq(O)s ) + 1(s), s E Uo = U(0, Rd)
j=2 ".

where the remainder 1?(s) satisfies

(4.11) IIR(S)II = O(IISIlk+,), as IISII -_ 0

and we used the notation s(U) = (s, s,... , S), (j-times).

Therefore, if we choose the approximating space V such that for some k > 2

(4.12) DF(xO)TDi77(0)s(i) E Vp, j = 2,... k, Vs E Rd,

then it follows from (4.10) and (4.11) that

(4.13) II(Iv - Ilp)v(Ks)ll = IJIZ(s)JI = O(IlsJIk+I), as 1IsI1 -_ 0,!
and we obtain from Theorem 1 the desired asymptotic estimateI
(4.14) IIv(Ks) - vp(Ks)ll = O(IIsIlk+,), as IISII _ 0.I

For fixed s E U0 the mapping

(4.15) r E Rd, IrI < 6 -y,(r) = xO + rKs + DF(xO )T, 7 (rs)

dcfines a path on M through xO which has at x° the derivatives

(4.16) D7 8 (0) = t = Ks, D'yt(O) = DF(x°)Djir(0), j = 2,... ,p.
| 11
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i The natural inner-product of X induces on Mo a Riemannian structure and the derivatives

(4.16) reflect geometric properties of this Riemannian manifold near z ° . For example, the

second orde. term satisfies

I DF(xo)TD2 r7(O)s( 2 ) =

(4.17) = -DF(xO)T[DF(x°)DF(xo)T)-IDF(xO)t(2) = V(t,t), t = Ks E T

where V denotes the second fundamental tensor of M0 at ? (see [RR89]) and hence this

term reflects curvature properties of M0 . Similarly

DF(°)TD3 77(O)s( 3) = D 3F(xO )t( 3 ) + 3D 2 F(x 0 )(t, V(t, t) - DF(x°)t,

represents a first "torsion" tensor.

Since F(-y,(r)) = 0 for sufficiently small r E Rd, it follows by repeated differentiation

that

(4.18) DF(x°)Dj-y.(O)s(' ) = H,(x°)t(j), t = Ks E T, j = 2,..., k,

with multi-linear operators Hj(x0 ) that are readily calculated recursively. For example.

we have

H2(x °)t ( 2) = -D 2F(xO°)t(2),

H 3(X°)t ( 3) = -D 3 F(x ° )t( 3 ) + 3D 2F(x 0 )(t, D 2-y,(0)s (2) ).

For the computation of the derivatives D-y(0)s') occurring in H3 , H4 ,... note that be-

cause of KT-I,(t) = KT(xO + rKs) for T E Rd we have KTDjt,(O) = 0 for j = 2,... , k.

Therefore, these derivatives are the unique solutions of the systems

(4.19) (DF(x°) D'y.(O)s U ( xo) , t KS E T, j = 2,...k

12
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I since, by construction of K, the matrix

I (DF( ?C))

is nonsingular. The systems (4.19) were derived differently by A.Noor et al (see e.g.

3 [NR83]) who also showed them to be an effective tool for the computation of the needed

path derivatives for many practical problems. For a related discussion about some of the

numerical aspects we refer also to [M871.

For the construction of the approximating subspace V C X that satisfies the condition

(4.12), let s 1 , s2 ,... ,Sd be some basis of Rd and compute for given k the

(4.20) = (d+k) -d-1

vectors

(4.21) DF(xo)TDri(0)(si ),... , ) E X, i1 + ... + ii = j, j = 2,... , k.

I These vectors span the desired subspace V C X. In practice, we usually finds that its

dimension p equals P in which case the vectors (4.21) can be used directly as the columns

of the matrix A. Otherwise, there are various means of extracting a linearly independent

subset to construct A.

Besides the i3 vectors (4.21) we need d vectors for K. In view of (4.20) the total number

d + 0 of vectors that have to be computed, increases very rapidly as the following table
shows: k d=1 d=2 d=4 d=6 d=10

1 1 2 4 6 10
2 2 5 14 27 65
3 3 9 34 83 285
4- 4 14 69 209 1000

For practical applications this limits the reduced basis approach to problems with a

small number d of parameters and to a choice of small orders of approximation k. But the

13
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use of small k, say k = 2 or k = 3, obviously requires more frequent updates of the basis

Ivectors which in turn calls for the development of faster algorithms for the computation

of these vectors.

IWe conclude this discussion by showing that for k = 2 the relation (4.6) with the second

fundamental tensor of M leads to a direct algorithm for computing K, A, and B based

Ion the results of [RR90]. For this suppose that natural bases axe used on X = Rd and

Y = R m . With the QR-factorization

I 
DF(x°)T  (QI Q2) 0

I where rge Q2 = ker DF(x°)T, we can set K = Q2. For any given s E Rd with sufficiently

small it l < e let x - x ° + Ks. Then the chord Newton algorithm

while "no convergence"

i solve RTz = F(x) for z;

set x := x - Q(z,O)T;

I converges to (P(s) = x ° + Ks + DF(xO)T17(s) E M and hence implements the tangential

coordinate system.

The algorithm of [RR90] for computing the second fundamental tensor assumes that

the natural inner product is used to induce a Riemannian structure on the manifold M.

Briefly, for d = 2 and k = 2 let ul and u2 denote the two columns of K = Q2 and set

U3 = u1 + u 2. It was shown in [RR90 that for u = ui with fixed index i = 1, 2,3, and any

sufficiently small h > 0 the algorithm

y= (h) chord Newton process

Y2 := '(-h) chord Newton process

S(Y 1 - X 0 ) + (Y2 - X0 ) approximation of the normal vector

v:= V - uTvui orthogonalization w. r. t. ui

v:= v/llvll normalization to length 1

produces an approximation of vi = V(ui, u,). With W = (vI, v2 , v3 ) we compute now the

14



singular value decomposition of the 3 x 3 matrix JW:

IO (B ) JW(CO, Cl)( ig (a,, ap)0
IBT 0 0)"

II
Here we have Bo E R Xp and Co E R3 xP and p : 3 denotes the maximal index such that

al > ... _ p > 0. Then it follows that p = rank A and hence that

I A = WCo, B = Bo diag (/1a,... ,1/ap).

are the desired basis matrices.

I The algorithm can be efficiently integrated into the method for computing simplicial

approximations of M developed in [R881. This also opens up the possibility of extending

the approach to the case d = 2, k = 3 by using finite difference approximations for

computing the required third order basis vectors. The resulting overall process will be

explored elsewhere.
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